Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian Song, ${ }^{\text {a }}$ Xiao-Jun Li, ${ }^{\text {b }}{ }^{*}$ Xiao-Ping Wu, ${ }^{\text {a }}$ Ke-Xia Lou ${ }^{\text {a }}$ and Rong-Xiu Feng ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China

Correspondence e-mail: xjlee@hebut.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.062$
$w R$ factor $=0.120$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(2S)-4-(Methylsulfanyl)-2-(pyrrolidin-1-yl)butanamide

The title compound, $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, was synthesized from l-methionine. The pyrrolidinone ring has an envelope conformation. Molecules are connected into two-dimensional layers by two independent intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\mathrm{N} \cdots \mathrm{O}$ distances of 2.939 (5) and 2.914 (5) Å.

Comment

Levetiracetam [(S)- α-ethyl-2-oxopyrrolidine acetamide, LEV] is an ethyl analog of the nootropic drug piracetam. LEV is a new antiepileptic drug (AED) (Bialer et al., 1999), recently approved by the US Food and Drug Administration. LEV possesses a chiral center but only the (S) enantiomer of α -ethyl-2-oxo-pyrrolidine acetylamide has anticonvulsant activity, and therefore it is administered as a single enantiomer (Haria \& Balfour, 1997). The title compound, (I), is an intermediate in the synthesis of LEV, and the molecular structure is illustrated in Fig. 1.

(I)

Atom C6 is chiral, and it has an S configuration. The molecule consists of a pyrrolidinone ring ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$), which has an envelope conformation. Atoms N1/C4/C2/C1 are nearly coplanar and the mean deviation from this plane is

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids.

Received 1 July 2003
Accepted 24 July 2003
Online 15 August 2003

Figure 2
A packing diagram of (I), viewed along the a axis. Hydrogen bonding is indicated by dashed lines and the following are the atom colour codes: green S , red O , blue N , black C and white H .
0.008 (3) \AA. Atom C3 is 0.306 (2) \AA from this plane and forms the flap of the envelope. The dihedral angle between the N1/ C4/C2/C1 mean plane and the C2/C3/C4 plane is $160.7(2)^{\circ}$. The conformation of the rest of the molecule can be described by a series of dihedral angles. Atoms $\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6$ are nearly coplanar and the mean deviation from this plane is 0.025 (3) \AA. The dihedral angle between the $\mathrm{N} 1 / \mathrm{C} 4 / \mathrm{C} 2 / \mathrm{C} 1$ and $\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6$ planes is $91.3(3)^{\circ}$. The dihedral angle between the $\mathrm{N} 1 / \mathrm{C} 4 / \mathrm{C} 2 / \mathrm{C} 1$ and $\mathrm{N} 2 / \mathrm{C} 5 / \mathrm{C} 6$ planes is 100.1 (2) ${ }^{\circ}$ and the dihedral angle between the $\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6$ and $\mathrm{N} 2 / \mathrm{C} 5 / \mathrm{C} 6$ planes is 34.7 (3) ${ }^{\circ}$.

In the crystal structure of (I), molecules are connected into two-dimensional layers, which are approximately perpendicular to the c axis, by two independent intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, namely $\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{i}}$ [symmetry code: (i) $\left.\frac{1}{2}+x, \frac{5}{2}-y, 1-z\right]$, with $\mathrm{N} \cdots \mathrm{O}=2.939$ (5) $\AA, \mathrm{H} \cdots \mathrm{O}$ $=2.09 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=170^{\circ}$, and also $\mathrm{N} 2-\mathrm{H} 2 D \cdots \mathrm{O} 1^{1 i}$ [symmetry code: (ii) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$], with $\mathrm{N} \cdots \mathrm{O}=$ 2.914 (5) $\AA, \mathrm{H} \cdots \mathrm{O}=2.12 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=153 \AA$ (see Fig. 2). There is also a questionable intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{N} 2 \cdots \mathrm{~N} 1=2.748(5) \AA, \mathrm{H} 2 D \cdots \mathrm{~N} 1=2.38 \AA$ and $\left.\mathrm{N} 2-\mathrm{H} 2 D \cdots \mathrm{~N} 1=107^{\circ}\right]$.

Experimental

The title compoud was prepared, according to a previously published method (Cossement et al., 1990), from L-methionine. L-Methionine was esterified to its methyl ester using absolute methanol and thionyl chloride. The resulting L -methionine methyl ester hydrochloride was amidated using gaseous ammonia to give L -methionine amide. This amide (50.0 mmol) was treated with potassium hydroxide (14.0 g), tetrabutylammonium bromide $(2.5 \mathrm{mmol})$ and 4 -chlorobutyryl chloride (55.0 mmol) in dichloromethane to yield ($(S)-\alpha-[2$-(methyl-thio)ethyll-2-oxo-pyrrolidine acetylamide. The reaction mixture was filtered and the filtrate evaporated under reduced pressure. The residue was purified by column chromatography over silica (eluent: mixture of dichloromethane/methanol/ammonia 95.5:4.5:0.2, $v / v / v)$.

The resulting white power was dissolved in 60 ml dichloromethane/ methanol (13:1, v/v). A single crystal of the title compound, suitable for X-ray analysis, was grown by slow evaporation of the solvent. $[\alpha]_{D}^{25}$ $+36.5^{\circ}(c=1$ in methanol $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): 1.85(2 \mathrm{H}, m)$, $2.03(3 \mathrm{H}, m), 2.12(2 \mathrm{H}, m), 2.24(2 \mathrm{H}, m), 2.69(2 \mathrm{H}, m), 3.44(2 \mathrm{H}, m)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 15.50\left(\mathrm{CH}_{2}\right), 18.10\left(\mathrm{CH}_{3}\right), 27.40\left(\mathrm{CH}_{2}\right), 30.45$ $\left(\mathrm{CH}_{2}\right), 31.03\left(\mathrm{CH}_{2}\right)$.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=216.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.018$ (6) А
$b=8.818$ (7) \AA
$c=18.760(16) \AA$
$V=1161.0(17) \AA^{3}$
$Z=4$
$D_{x}=1.237 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 687
reflections
$\theta=2.6-22.4^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Plate, colorless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer

φ and ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.927, T_{\max }=0.950$
4477 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.120$
$S=1.08$
2047 reflections
128 parameters
H-atom parameters constrained

2047 independent reflections
1574 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-22 \rightarrow 17$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Absolute structure: (Flack, 1983), 830 Friedel pairs
Flack parameter $=-0.02(17)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	$1.362(5)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.462(4)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.455(5)$	$\mathrm{C} 8-\mathrm{S} 1$	$1.810(4)$
$\mathrm{C} 5-\mathrm{N} 2$	$1.325(5)$	$\mathrm{C} 9-\mathrm{S} 1$	$1.806(5)$
O1-C1-N1	$124.4(3)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{N} 2$	$122.5(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$127.3(3)$	$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 8$	$101.4(2)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$148.5(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1$	$120.2(4)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-64.2(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1$	$-113.4(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$168.9(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 9$	$67.0(4)$

H atoms were placed in idealized calculated positions with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.96 to $0.98 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$. They were included in the refinement as riding atoms, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl) of the carrier atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bialer, M., Johannessen, S. I., Kupferberg, H. J., Levy, R. H., Loiseau, P. \& Perucca, E. (1999). Epilepsy Res. 34, 1.

organic papers

Bruker (1997). SMART, SAINT and SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cossement, E., Motte, G., Geerts, J. P. \& Gobert, J. (1990). GB Patent No. 2225322.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Haria, M. \& Balfour, J. A. (1997). CNS Drugs, 7, 159.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

